Desalination driven by salt-gradient solar ponds: impact of evaporation suppression on energy collection and water production

Fondecyt 11121208, , CEDEUS (FONDAP/15110020)

figure4

Abstract

Global population growth and higher standards of living are significantly increasing the demand for energy and water. Many areas around the world suffer from fresh water shortages, and consequently, they have been relying on desalination technologies as a non-conventional source of fresh water. Nonetheless, current desalination systems require significant quantities of energy for water purification. This additional need of energy cannot be fulfilled using fossil fuels because of the negative environmental impacts of combustion and the rapid depletion of fossil fuel reserves. Desalination powered by renewable energy sources is an attractive solution to address the worldwide water- shortage problem because it has lower environmental impacts and lower greenhouse gas emissions.

This research aims to investigate the impact of evaporation suppression from a salt-gradient solar pond on energy collection, and on water production rates of a membrane distillation system powered by a solar pond. The main hypothesis of this research is that a significant increase in fresh water production rates will result from the reduction of evaporation.

The photograph below shows the experimental setup when suppressing evaporation using transparent floating discs.

2014-09-03 15.52.12 HDR

The next figure shows the thermal evolution of the experimental salt-gradient solar pond.

thermal_evolution_sgsp

The next graph shows the estimated water production rates in the membrane distillation / salt-gradient solar pond coupled system for different geographical locations.

Fig4

The next photograph presents the salt-gradient solar still.

IMG_1275

Research Team

  • Francisco Ignacio Suárez Poch (Principal investigator).
  • Daniel Ignacio González Hodar, M.Sc. (2015), Thesis: “Constructal design of salt-gradient solar ponds”
  • José Manuel Amigo Álvarez, M.Sc. (in program), Thesis: “Partition of energy fluxes in salt-gradient solar ponds”
  • Andrés Matías Sarabia Méndez, M.Sc. (in program), Thesis: “Double-diffusive convective models for salt-gradient solar ponds”.
  • Cristóbal José Silva Jordán, Civ. Eng. (2015), Eng. Thesis: “Experimental study of evaporation suppression in solar ponds” (“Estudio experimental de la reducción de evaporación en una piscina solar”).
  • María Belén del Río Otto, Civ. Eng. (in program), Thesis: “A numerical model of direct contact membrane distillation”.
  • Raúl Esteban Urtubia Jopia, Undergraduate student, Theme: viability of using salt-gradient solar ponds as an energy source for membrane distillation
  • Javier Andrés Benavides Maturana, Undergraduate student, Theme: construction of a salt-gradient solar still.
  • Magdalena Mendoza Ruedi, Undergraduate student, Theme: evaluation of direct contact membrane distillation coupled with solar ponds in Chile.
  • José Fajardo, Undergraduate student, Theme: evaluation of the salt-gradient solar still
  • Victoria Sandoval, Assistant in laboratory experiments
  • Maximiliano Felis, webmaster

 

Publications (peer reviewed) related to this project

  1. González, D., Amigo, J., Lorente, S., Bejan, A., Suárez, F. Constructal design of salt-gradient solar ponds. Under review in Applied Energy.
  2. Suárez, F., Ruskowitz, J.A., Tyler, S.W., Childress, A.E. (2015). Renewable water: direct contact membrane distillation coupled with solar ponds. Applied Energy 158, 532-539. doi: 10.1016/j.apenergy.2015.08.110
  3. Suárez, F. (2014). Comments on “Capabilities and limitations of tracing spatial temperature patterns by fiber-optic distributed temperature sensing” by Liliana Rose et al. Water Resources Research, 50, doi: 10.1002/2014WR015448.
  4. Suárez, F., Ruskowitz, J.A., Childress, A.E., Tyler, S.W. (2014). Understanding the expected performance of large-scale solar ponds from laboratory-scale observations and numerical modeling. Applied Energy 117, 1-10. doi: 10.1016/j.apenergy.2013.12.005.
  5. Ruskowitz, J.A., Suárez, F., Tyler, S.W., Childress, A.E. (2014). Evaporation suppression and solar energy collection in a salt-gradient solar pond. Solar Energy 99, 36-46. doi: 10.1016/j.solener.2013.10.035.

 

Conference presentations/abstracts related to this project

  1. González, D., Amigo, J., Suárez, F. (2015). An investigation of solar pond configurations using the principles of constructal design. 10th Conference on sustainable development of energy, water and environment systems. Dubrovnik, Croatia. September 27-October 3, 2015.
  2. Suárez, F., Urtubia, R. (2015). Tackling the water-energy nexus: membrane distillation driven by solar ponds. 10th Conference on sustainable development of energy, water and environment systems. Dubrovnik, Croatia. September 27-October 3, 2015.
  3. Suárez, F. (2015). Evaporation suppression in salt-gradient solar ponds and development of new measuring techniques in soils. International Seminar: Advances in evaporation and its impacts on the environment. Santiago, Chile, March 19, 2015.
  4. Suárez, F., Sarabia, A., Silva, C. (2014). Use of fiber-optic DTS to investigate physical processes in thermohaline environments. AGU 2014 Fall Meeting. San Francisco, California, USA. December 15-19, 2014.
  5. González, D., Escauriaza, C., Suárez, F. Hacia un modelo tridimensional para representar la hidrodinámica de piscinas solares. XIII Jornadas de Mecánica Computacional. Curicó, Chile. October 2-3, 2014.
  6. Suárez, F. Agua renovable: membranas de contacto directo acopladas a pozas solares. XXVI Congreso Latinoamericano de Hidráulica. Santiago, Chile. August 25-30, 2014.
  7. González, D., Escauriaza, C., Suárez, F. Desarrollo de un modelo tridimensional para estudiar el comportamiento de piscinas solares. XXVI Congreso Latinoamericano de Hidráulica. Santiago, Chile. August 25-30, 2014.
  8. Suárez, F. Impact of different physical processes on salt-gradient solar pond performance: numerical and experimental investigations. 2nd International Symposium on Energy Challenges and Mechanics. Aberdeen, Scotland, UK. August 19-21, 2014.
  9. Suárez, F., Ruskowitz, J.A., Tyler, S.W., Childress, A.E. (2013). Increasing the collected energy and reducing the water requirements in salt-gradient solar ponds. AGU 2013 Fall Meeting. San Francisco, California, USA. December 9-13, 2013.
  10. Suárez, F. (2013). Estudio experimental y numérico de una poza solar a escala de laboratorio. XXI Congreso Chileno de Ingeniería Hidráulica. Concepción, VIII Región, Chile. October 23-25, 2013.
  11. Suárez, F. (2012). Aplicación de un modelo de difusión doble de calor y sales en piscinas solares. Cuadernos de Mecánica Computacional, 10(1),77-86, ISSN 0718-171X.
  12. Suárez, F. (2012). Destilación en membranas energizada por piscinas solares. III Seminario Internacional de Desalación ALADYR 2012. Antofagasta, Chile, 1-2 October.